A Sequential Monte Carlo Method for Multi-target Tracking with the Intensity Filter

نویسندگان

  • Marek Schikora
  • Wolfgang Koch
  • Roy Streit
  • Daniel Cremers
چکیده

Multi-target tracking is a common problem with many applications. In most of these the expected number of targets is not known a priori, so that it has to be estimated from the measured data. Poisson point processes (PPPs) are a very useful theoretical model for diverse applications. One of those is multi-target tracking of an unknown number of targets, leading to the intensity filter (iFilter) and the probability hypothesis density (PHD) filter. This chapter presents a sequential Monte Carlo (SMC) implementation of the iFilter. In theory it was shown that the iFilter can estimate a clutter model from the measurements and thus does not need it as a priori knowledge, like the PHD filter does. Our studies show that this property holds not only in simulations but also in real world applications. In addition it can be shown that the performance of the PHD filter decreases substantially if the a priori knowledge of the clutter intensity is chosen incorrectly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters

The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...

متن کامل

Clutter Removal in Sonar Image Target Tracking Using PHD Filter

In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...

متن کامل

Cubature Information SMC-PHD for Multi-Target Tracking

In multi-target tracking, the key problem lies in estimating the number and states of individual targets, in which the challenge is the time-varying multi-target numbers and states. Recently, several multi-target tracking approaches, based on the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter, have been presented to solve such a problem. However, most of these approaches...

متن کامل

Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods

We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the pe...

متن کامل

Scheduling Multiple Sensors Using Particle Filters in Target Tracking

A critical component of a multi-sensor system is sensor scheduling to optimize system performance under constraints (e.g. power, bandwidth, and computation). In this paper, we apply particle filter sequential Monte Carlo methods to implement multiple sensor scheduling for target tracking. Under the constraint that only one sensor can be used at each time step, we select a sequence of sensor use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012